新研究突破马铃薯自交不亲和性技术瓶颈 为自交系杂交育种提供全新策略

来源:中国科学报

马铃薯是世界上最重要的块茎类粮食作物,全球有13亿人口以马铃薯为主食。与大多数谷物类粮食作物不同,马铃薯靠种薯繁殖。

2013年起,中国农业科学院深圳农业基因组研究所(以下简称基因组所)研究员黄三文团队联合云南师范大学(以下简称云师大)等团队,发起“优薯计划”,即以二倍体育种替代四倍体育种,以杂交种子繁殖替代薯块繁殖。

二倍体马铃薯是一种自交不亲和的作物,培育二倍体自交系首先要克服自交不亲和。所谓自交不亲和,一般是指,具有雌雄花蕊的花,其自身的花粉不能让自己的雌蕊受精结实。

1998年,日本和美国科学家发布了一种可自交的野生马铃薯,并证实这是由某个基因控制的。此后,很多科学家想找到这个基因却无功而返。

日,《自然—通讯》在线发表了云师大和基因组所合作克隆的马铃薯自交亲和基因Sli及其调控机制。

中国农业大学教授李天中告诉《中国科学报》:“打破自交不亲和的技术瓶颈,多代自交获得纯合自交系,利用选择的自交系育成的优新品种杂交种子生产,一直是马铃薯育种家的工作目标和努力方向。”

南京农业大学作物遗传与种质创新国家重点实验室教授吴巨友在接受《中国科学报》采访时说,这项成果将在创制二倍体马铃薯自交系、丰富其杂交亲本遗传基础中发挥重要作用,也将为其他配子体型自交不亲和物种,如梨、苹果等的自交亲和品种选育提供新途径。

表型难鉴定 基因难克隆

1998年,日本和美国科学家合作发布了一株自交亲和的野生材料,并确定了这个材料的自交亲和状受单个位点调控。

由于前人报道马铃薯1号染色体上的S位点调控了自交不亲和过程,所以日本科学家推测该位点通过抑制S位点起作用,将其命名为Sli,可以理解为S位点抑制子。

“在马铃薯中,均每条染色体上存在3000多个编码基因。如果把基因组当做一个宝藏,基因就相当于里面的一颗宝石。发现基因,代表知道有这颗宝石的存在;把基因初步定位在某个染色体上类似于知道这颗宝石位于宝藏的哪一部分,但并不清楚具体位置;而成功地克隆这个基因则意味着准确找到了这颗宝石。”此次发表于《自然—通讯》的论文共同通讯作者尚轶告诉《中国科学报》。

国际上多个实验室一直在尝试克隆Sli基因。然而,鉴定自交是否亲和首先需要进行大量自交授粉工作,通过授粉后是否坐果进行判断。

尚轶介绍,植株坐果与否受到多种环境因素影响。如果自交不亲和的植株授粉时发生了串粉,就会导致坐果。比如一阵风把其他植株的花粉吹到柱头上,或者授粉时镊子没有清理干净,沾上了其他植株的花粉,都可以让本身自交不亲和的植株自花授粉后坐果。

而那些自交授粉后不坐果的,也有可能是温度太低或者太高,或者花粉育出了问题,而不是由于自交不亲和。

“这就导致表型鉴定特别困难,且鉴定结果也不准确,给Sli基因的克隆工作带来了很大困难。”论文第一作者、云师大助理研究员马玲介绍,不仅表型难鉴定,前人还认为Sli基因与马铃薯的致死基因相连。所以当Sli位点纯合后,会导致后代致死,这让他们无法得到Sli基因的纯合体。

“由于马铃薯自交亲和的表型易受外界环境干扰,该基因一直未被克隆。”黄三文说。

神奇的偏分离现象

在含有Sli位点的马铃薯植株自交后代中,会出现一种偏分离现象。论文共同第一作者、岭南现代农业科学与技术广东省实验室深圳分中心研究员张春芝解释道,正常情况下杂合的基因型(A/a)自交后代中应该出现A/A、A/a、a/a三种基因型,比例分别是1:2:1。而含有Sli基因的杂合个体自交后只出现Sli/Sli和Sli/sli两种基因型,比例为1:1,找不到sli/sli基因型的个体。

“后代在12号染色体上出现了极端的偏分离比例。”张春芝说。

尽管前人也发现了这一偏分离现象,但他们认为原因是Sli与致死基因连锁,所以当Sli位点纯合后就会导致后代致死。

“然而,我们发现偏分离是受精造成的,即只有含Sli基因的花粉才能够完成受精,因此后代中有Sli/Sli和Sli/sli基因型,没有sli/sli个体。”张春芝说。

于是,含有Sli基因的杂合个体自交产生的后代全部含有Sli基因,都是自交亲和的。“这样我们就不用对后代再进行繁琐的亲和表型鉴定,并利用这个特点扩大我们的后代群体用于基因定位,群体越大对基因定位帮助越大。”尚轶说。

吴巨友告诉《中国科学报》,利用后代均为自交亲和表型的特点,他们将遗传群体扩大至6624个植株,最终从花粉RNA中克隆了Sli基因。

“我们发现了配子体导致的自交不亲和,其后代均为自交亲和表型,不用做表型鉴定,这样就可以扩大遗传定位群体数量,因而快速克隆了Sli基因。”黄三文说。

一把“万能钥匙”

虽然找到了马铃薯自交亲和基因,但它究竟是如何实现这一机制的呢?

吴巨友向《中国科学报》解释,植物自交不亲和的遗传位点称为S位点,分别编码雌蕊决定因子和花粉决定因子。

在分子水上,马铃薯属于配子体型自交不亲和作物,表现为花粉管在花柱中部停止生长,不能进入子房完成受精。该系统中,雌蕊的决定因子是S-RNase蛋白,它是一种细胞毒蛋白,仅在花柱中表达,并被分泌到花柱传导组织中;而花粉的决定因子是位于S-locus上的SLF蛋白,它们在花粉中特异表达,不能识别自身的S-RNase,因此S-RNase的毒作用存在,表现出自交不亲和。

当花粉管在花柱引导组织生长时,亲和与不亲和的S-RNase蛋白都可以进入花粉管。亲和的S-RNase在花粉胞质中被花粉SLF蛋白识别并降解;而不亲和的S-RNase被保留在胞质中发挥其毒作用,引起花粉管的细胞程序死亡而停止生长。

“如果认为S-RNase蛋白是雌蕊阻断花粉管进入的‘锁’,那么SLF蛋白就是打开这把‘锁’的‘钥匙’。”吴巨友说,通常,一种SLF只能识别1~2种类型的S-RNase,类似于一把钥匙开一把锁,如果一把钥匙能开多把锁,就可以产生广泛的自交亲和。

尚轶告诉《中国科学报》,他们鉴定到的Sli蛋白不是S位点上的SLF蛋白,且能识别超过10种类型的S-RNase,从而打破自交不亲和,表现出“万能钥匙”的作用,可广泛应用于打破二倍体马铃薯的自交不亲和,对于培育马铃薯自交系有重要作用。

“马铃薯自交亲和基因Sli的进化有其特殊意义,但现在还未知。”黄三文说,目前也不清楚别的作物里是否也有类似的基因存在。

李天中说,该研究突破了马铃薯自交不亲和技术瓶颈,为自交系杂交育种提供了全新策略,是植物自交不亲和理论研究及产业应用的成功范例。相较于传统策略,该方法创制的自交亲和马铃薯具有广谱强、效率高等优势,为优薯计划提供了重要工具。

该研究也为遗传背景高度杂合、杂交育种随机强、多种优良状聚合难的其他自交不亲和园艺作物育种提供了借鉴和思路。

推荐

热点更多》

关闭

快讯更多》

财富